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For Dieter Seebach:
They that go down to the sea in ships, that do business in great waters:

These see the works of the Lord, and his wonders in the deep1).

Electrostatic and polarization energies for the three known polymorphic crystal structures of 1,4-
dichlorobenzene, as well as for one particularly stable virtual crystal structure generated by computer search,
were calculated by a new accurate numerical integration method over static molecular charge densities obtained
from high level ab initio molecular-orbital calculations. Results are compared with those from standard
empirical atom-atom force fields. The new electrostatic energies, which include charge density overlap
(penetration) effects, are seen to be much larger than and sometimes of opposite sign to those derived from
point-charge models. None of the four polymorphs is substantially more stable than the others on electrostatic-
energy grounds. Molecule-molecule electrostatic energies have been calculated for the more important
molecular pairs in each of the four structures; trends are found to be very different from those indicated by
point-charge energies or by total energies estimated with a parametric atom-atom force field. Conclusions based
exclusively on analysis of intermolecular atom contacts and point-charge electrostatics may need to be modified
in the light of the new kind of calculation.

Introduction. ± Every crystal structure determined by X-ray analysis provides the
answer to a question ± what is the molecular structure of the compound? ± and
simultaneously poses a new question ± why did the compound choose to crystallize in
that particular crystal structure rather than in another? We can describe in precise
metrical detail the intermolecular packing that is found to occur in the new crystal
structure (or crystal structures, for polymorphism is turning out to be far more common
than previously supposed [1]), and there is usually no shortage of ways to −explain× the
new structure in terms of local intermolecular interactions. By means of energy
calculations with empirical-potential functions, we can usually confirm that the new
structure corresponds to a minimum in the calculated energy hypersurface, but that is
about as far as our present capabilities can go.

For a given molecule of known structure, we still have no good theory that enables
us to predict its crystal structure with confidence [2]. There is no deep mystery about
this. As far as we can tell, the fundamental physics of supramolecular chemistry are
understood. The main problem is that, when molecules are brought into contact, the
interaction energy is a complicated function of mutual orientation and distance, with
the result that many different packing arrangements of a given molecule can have
packing energies within a range of only a few kJ mol�1. For example, for benzene, 30
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possible crystal structures are calculated to have lattice energies within a range of 10 kJ
mol�1 [3]. Similar considerations apply even for crystals built from large molecules
where the total lattice energy may amount to several hundred kJ mol�1. Hydrogen
bonding is a special case, intermediate in energy between covalent and supramolecular
bonding, but, even here, different H-bonding patterns with closely similar energies may
be possible. Polymorphism seems to be common among all types and sizes of molecules.

Although there is no rigorous way to partition the potential energy of a crystal into
component parts, all sorts of terms have come into use to describe various kinds of
interaction that can be taken into account in the energy balance, at least conceptually:
electrostatic interactions, donor-acceptor interactions, dipole-dipole and quadrupole-
quadrupole interactions, steric repulsion, polarization energy, �-� stacking interactions,
and dispersion or Van der Waals energy. These are used, sometimes singly and
sometimes in combination, by various authors to explain known crystal structures in
terms of simple models, but their predictive capacity is meager to say the least. At a
somewhat higher level, various systems of atom-atom potentials [4] have come into use
over the last half-century or so (several reviews are available, see, e.g., [5]). The main
assumption here is that only central forces operate between pairs of atoms in different
molecules, and that the total interaction energy is the sum of the interactions between
all pairs of atoms in the crystal ± the additivity assumption. The individual atom-atom-
interaction energies include a repulsive term with a steep rise in the energy at small
interatomic distances, an attractive term designed to allow for dispersion-type
interactions and, sometimes, an additional term for Coulombic interactions. With an
exponential function as the repulsive term, the interaction energy between a pair of
atoms can then be written as in Eqn. 1

Eij�A exp(�Brij)�Crij�6� qiqjrij�1 (1)

whereA,B,C are (usually) empirical parameters, rij is the distance between atoms i and
j, and qi and qj are the charges adopted for the Coulombic contribution. A rigorous
definition of an −atom× in this simple scheme is conspicuously missing, but by
−interatomic distances× we usually mean internuclear distances.

When devising an empirical parametric scheme, economy is a must. An extreme is
Kitaigorodski×s −universal potential×, E(r)� 3.5 [8600 exp(�13r/ro) � 0.04 (r/ro)6],
where ro is the assumed equilibrium distance for each kind of atom pair [6]. In the UNI
force field [7], which performs reasonably well in reproducing known crystal structures
and predicting unknown ones, each set of parameters A, B, C is regarded as being
characteristic of a given pair of elements (that is to say, no distinction is made between
intermolecular C ¥¥ ¥H interactions in crystals of say CH4, C2H4, C2H2, C6H6, etc., or
between intermolecular H ¥¥¥O interactions in crystals of say CH3OCH3, CH3CH�O,
CH3COOH, etc.). The parameters have simply been fitted to experimental structures
and sublimation enthalpies for a wide selection of organic crystals. Coulombic terms
can be included in the energy calculation or not, depending on the problem. Other
force fields use different parametrization methods, and others attempt to fit atom point
charges (or distributed multipoles) to the electrostatic field of the molecule as obtained
from a quantum-mechanical calculation, and also to estimate interatomic repulsion,
polarization and dispersion terms from the calculated (or experimental) electron
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density in different ways. There is no general consensus on how precisely this should be
done, and several schemes are currently adopted. The ultimate goal of all this is
prediction and control of organic crystal structures.

Because of the r�6 dependence of the attractive term in Eqn. 1 and in other widely
used computation schemes, intermolecular energy contributions are important only for
interactions between atoms in different molecules that are in close contact, that is,
between atoms on the molecular peripheries. In the calculated energy, interactions
involving nonperipheral atoms at larger distances fade into insignificance. Since the
peripheries of organic molecules are mostly H-atoms, this emphasis on close-contact
atom pairs has led to a preoccupation in molecular recognition schemes with
interactions involving these atoms, such as −unconventional× or weak H-bonds [8].
Thus, the original H-bonding concept involving (O,N)�H ¥¥¥ (O,N) interactions has
been extended to include C�H ¥¥¥X (X� any peripheral atom) interactions. Whatever
its merits for descriptive classification of crystals may be, this view is based on a serious
oversimplification. The actual situation regarding intermolecular interactions may be
much more complicated.

In a previous paper [9], we discussed the experimental crystal structures of the
dichlorobenzenes in terms of energy calculations and qualitative geometrical argu-
ments based largely on intermolecular contacts in the crystals. We contrasted the
absence of explicit electrostatic terms in the UNI force field with their obligatory
presence as an intrinsic feature of other force fields, in particular the Williams force
field [10]. The dichlorobenzene crystal structures are characterized [11] by intermo-
lecular Cl ¥¥¥ Cl distances that are markedly less than the traditional Van der Waals
diameter of a Cl-atom (3.6 ä) and by unfavorable dispositions of C�Cl bond dipoles;
in fact, the �-polymorph of the 1,4-isomer contains an almost linear C�Cl ¥¥ ¥ Cl�C
contact with a Cl ¥¥ ¥ Cl distance as short as 3.38ä. It has been pointed out that,
according to standard atom-atom potential functions, such a contact should be
associated with a repulsive interaction, and that introduction of standard Coulombic
charges (negative charge on Cl, positive on C) would not improve the matter. The
presence of this short contact does not prevent the �-polymorph from having a packing
energy quite similar to that of the other polymorphs.

The trouble with such qualitative geometric arguments is that they are based on
what seems like an obvious, more-or-less standard partitioning of the structure into
supposedly −main× or −structure-defining× interactions between certain atoms, in this
case the short intermolecular Cl ¥¥ ¥ Cl contacts. But this way of looking at the structure
overlooks the many-body aspect of the problem. What is important is not necessarily
the interactions among individual atoms in the different molecules that attract (or, at
short distances, repel) one another, however plausible that may seem, but the overall
interaction between the charge densities, including their mutual polarization. This
clearly calls for a different kind of computational approach: it would appear that one
needs not just a force field, but rather the force field for a given molecule. Typological
classification and description should give way to first principles. Recently, an accurate
method for the calculation of electrostatic energies in molecular crystals has been
developed [12]. Here, we apply this method to the actual and virtual crystal structures
of 1,4-dichlorobenzene, consider possible applications to the refinement of existing
force fields, and ask to what extent conclusions based on qualitative examination of
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specific atom-atom interactions are substantiated by the results of the accurate
electrostatic calculations.

In passing, we once again underline the usefulness of virtual crystallography, the
construction of plausible crystal structures for a given molecular structure with
preconceived structural or energetic characteristics. Far from being the by-product of a
frustrated crystal-structure prediction, carefully chosen virtual structures can help to
illuminate the discussion of intermolecular interactions and packing effects. We include
discussion of a possible orthorhombic structure, which is calculated to be particularly
stable but has never been observed.

Intermolecular Interaction Energies. ± The new method involves the calculation of
part of the intermolecular interaction energy by direct numerical integration over
electron densities [12]. It starts by a calculation of the valence-only molecular-electron
density by standard quantum-mechanical programs (GAUSSIAN98 [13] was used
here) at the MP2 6-31G** level. The original calculated density is expressed in terms of
a large number (several millions) of charge pixels. It is then condensed by formation of
super-pixels that contain the charge present in a cubic box of n�n� n original pixels, n
being called the condensation level. Charge pixels below a certain minimum charge
threshold, qmin, usually of the order of 10�6 or 10�7 electrons, are then screened out.
These measures reduce the number of pixels, NP, in a molecular electron density to
something of the order of 104. This condensed density distribution is then packed into
the crystal structure, undeformed and unpolarized, just as in a rigid molecule (this is, of
course, a restrictive assumption because the actual electron density of a molecule in a
crystal is modified by the presence of neighbouring molecules). The electrostatic
energy between any two molecules in the crystal is then obtained as a double sum of
Coulombic terms over pixels, plus a pixel-nuclei and a nuclei-nuclei sum:

EAB� 1/(4���) [�� qi qj/rij��� qi Zj/rij��� Zi Zj/rij] (2)

where qi and Zj are the charges on pixel i and nucleus j, respectively, rij is a pixel�pixel,
pixel�nucleus or nucleus�nucleus distance in turn, and �� is the vacuum permittivity.
In addition, the electric field �i at any pixel within one molecule due to the electron
densities of all surrounding molecules in the crystal is also evaluated, and a pixel
polarizability, �i, is defined by an empirical partitioning of atomic polarizabilities, as
described in [12]. The polarization energy is then computed by the standard linear
polarization formula:

EPOL� 1/(4���) �� 1/2 �i �i
2 (3)

The calculated molecular electron density corresponds to that of a rigid, gas-phase
molecule at 0 K and does not include dynamic polarization, that is, the deformation due
to the influence of the electrostatic field of neighboring molecules. The electrostatic
energy (Eqn. 2) is a balance between positive and negative terms. It can be either net
stabilizing or destabilizing. Since the polarization energy arises from the compliance of
a charge distribution to the field generated by its neighbors, its net effect is always
stabilizing. Polarization is not treated explicitly in empirical schemes, being incorpo-
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rated implicitly together with dispersion in the parameter C of the stabilizing term of
Eqn. 1.

Dispersion forces are always present between molecules. They have a quantum-
mechanical origin in the sense that they result from the correlated motion of the
electrons in the molecules. Dispersion forces are ubiquitous in condensed phases of all
chemical substances and are always attractive. An accurate calculation of such forces
would be extremely complicated, but they are approximately proportional to the
product of the molecular polarizabilities and inversely proportional to the sixth power
of the intermolecular separation. In our electron-pixel model of intermolecular
interactions, the dispersion energy can be approximated in principle, once the local
polarizabilities �i have been defined, as indicated above; however, the details of such a
treatment have not yet been fully worked out. In empirical schemes, the dispersion
energy is seldom evaluated separately and is usually incorporated in the second
coefficient of Eqn. 1.

Contiguous, partly overlapping molecular-electron densities also generate exchange
or Pauli repulsion, involving exclusion of electrons with the same spin from the same
region of space. This purely quantum-mechanical effect prevents molecules from
merging into each other and is at the origin of the small compressibility of condensed
phases. Exchange repulsion can be taken as being proportional to overlap [14], which is
also determinable in our electron-pixel scheme. As for the dispersion energy, here again
the treatment is at an advanced stage of development but not yet fully worked out. We
must, therefore, still resort to empirical estimates for dispersion and repulsion
contributions [8], as required.

Crystal Structures of 1,4-Dichlorobenzene. ± Table 1 summarizes experimental
information about the three known polymorphs of 1,4-dichlorobenzene as determined
by X-ray diffraction at 100 K [11] plus the best virtual structure obtained in our
previous study [9]. Since computational crystal structures are energy-optimized
without regard of kinetic energies, they are formally 0 K structures. For comparison
with the known structures, the virtual crystal structure (in space group Pbca) was
expanded to obtain estimated unit-cell parameters at 100 K and at room temperature.
This was done by assuming a 2% cell volume increase for each 100 K, as judged from
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Table 1. 1,4-Dichlorobenzene Polymorphs: Structural Data, Short Atom-Atom Contacts and Lattice Energies
Computed by Williams (W) or UNI Force Field Potentials

Phase Space group,
temperature

Z Vcell/ ä3 Cl ¥¥ ¥ Cl/ä Cl ¥¥ ¥ H/ä �E(W)/
kJ mol�1

�E(UNI) �Eqqa)/kJ mol�1

ESP MUL

� P21/a, 100 K 2 306.8 3.73 2.89, 3.01, 3.02 64.7 65.5 4.8 0.9
� P1≈, 100 K 1 153.5 3.39 2.97, 3.00, 3.03 63.7 65.7 4.0 0.2
� P1≈, r.t. 1 159.4 3.42 2.99, 3.03 ± 63.8 ± ±
� P21/c, 100 K 2 305.4 3.80, 3.82 2.89, 3.10 60.9 66.4 5.7 7.9
Virtual Pbca, 0 K 4 579.6 3.62 2.91 63.4 68.3 3.5 6.1

Pbca, 100 K 4 593.6 ± ± 64.0 71.0 3.5 ±
Pbca, 298 K 4 615.1 ± ± 64.0 71.4 3.5 ±

a) Coulombic point charge energies by ESP or Mulliken charges (see text).



measurements of the �-phase [15] and in line with statistics on the expansion
coefficients of organic compounds [16]. Lattice energies computed with the Williams
force field and the UNI force field are around 60 to 65 kJ mol�1 for all four polymorphs
but give different energy ordering. For comparison, the experimental heat of
sublimation of 1,4-dichlorobenzene (unknown polymorph) is 64.9 kJ mol�1 [17]. As
shown experimentally, the �-phase is the most stable one at low temperature, but this is
not reflected by either of the computational schemes.

Table 1 also includes the electrostatic energy calculated for each structure with
estimated point charges on the atomic nuclei (corresponding to the third term in
Eqn. 1) for both Mulliken and ESP charges. The former are derived from Mulliken
population analysis [18] and the latter by optimal fitting of atomic charges to reproduce
the calculated electric field of the molecule as closely as possible. The charges
themselves are quite different (ESP in parentheses): Cl, �0.004 (�0.097), C(Cl),
�0.130 (�0.001), C(H), �0.093 (�0.070), H, �0.156 (�0.119), and, correspondingly,
so are the calculated electrostatic energies. Both kinds of atomic charge are in common
use but they have no real theoretical basis, since the charge of an atom in a molecule can
neither be measured nor defined in a unique manner. In any case, Table 1 shows that,
for these crystal structures, the electrostatic energy given by both kinds of atom point
charges is less than 10% of the lattice energy calculated with the respective force fields
of the exp-6 type (the first two terms in Eqn. 1).

In calculations based onEqn. 1, each term corresponds only in a very rough manner
to what it is supposed to represent. The electrostatic energy (as given by the third term)
comes out merely as a small correction factor. In our more rigorous calculation, the
electrostatic energy is many times more stabilizing than that obtained by localized
atomic point charges. However, since total lattice energies calculated by Eqn. 1
compare favorably with sublimation energies, the only possible conclusion is that the
electrostatic energy is already implicitly included, although in an indirect and
somewhat cryptic manner, in the balance of the first two terms of Eqn. 1.

Electrostatic and Polarization Energies. ± Results of calculations made with the
new electrostatic-energy program at the MP2 6-31G** level are shown in Table 2. The
molecules have slightly different dimensions in the four polymorphs, but the maximum
difference in molecular electronic energy between them is only ca. 1 kJ mol�1. The
untreated charge densities consisted of 99� 107� 169 points, for a step of 0.088 ä.
Differences between the two levels of condensation are small, but they are large
enough to reverse the energy ordering between �- and �-phases, for example. The
electrostatic energies in Table 2 are seen to be many times larger than those estimated
by the point-charge models and to be slightly less than half of the lattice energies as
given by the empirical force fields (Table 1).

In a crystal, the electron density of one molecule overlaps a little with those of the
neighboring ones. On the one hand, overlap means electron-electron repulsion, but, on
the other hand, the peripheral fringes of the electron density of one molecule come into
closer contact with the nuclei of neighboring molecules. Before exchange repulsion and
nucleus-nucleus electrostatic repulsion come drastically into play, there is a borderline
region where net repulsion or attraction depends on a very subtle balance. This energy
contribution due to overlap is present in our calculation but is missing in localized,
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point-charge schemes. The difference between the rigorous electrostatic energy and the
electrostatic energy obtained by a contracted computational scheme, such as a point-
charge approximation or a distributed multipole scheme, is known as the penetration
energy. [19] It has been shown [12] that the present method of calculating electrostatic
energies qualifies as rigorous in this respect.

As mentioned, the virtual Pbca structure was expanded to obtain estimated unit-
cell parameters at 100 K and at room temperature. This expansion produces an increase
in all interatomic intermolecular distances in the crystal, and the calculated electro-
static and polarization energies are extremely sensitive to this. Thus, the relatively small
changes in cell dimensions on passing from 0 to 300 K lead to a 40% decrease in both
types of energy contribution, underlining the critical importance of closest possible
packing for maximizing the lattice energy in crystals. As we have remarked elsewhere:
as far as the packing energy is concerned, empty space is wasted space [20].

Polarization energies also are significantly different among the four structures, but
their trend is the same as the trend in electrostatic energies, in partial justification of the
neglect of the former in all empirical force fields. The polarization energies amount to
ca. 10% of the lattice energies, and the sum of electrostatic and polarization energies is
thus considerably less than the sublimation enthalpy for all four structures. This is not
too surprising as the two quantities are not comparable, because of our temporary
neglect of other contributions (exchange and dispersion energies). As discussed in [12],
for some crystal structures the sum of electrostatic and polarization energies is larger
than the sublimation enthalpy, for some it is smaller. However, as compensation for
these deficiencies in the present calculations, the electrostatic energies in Table 2 are
not subject to arbitrary assumptions about atomic charges and are in that sense
rigorous.

The Pbca structure was calculated to have the best packing energy according to the
empirical chargeless UNI force field, and it also has the best electrostatic and
polarization energies according to the new calculations. Thus, the failure of the
chargeless UNI force field to predict the observed structures as the most stable ones is
not due to its lack of explicit electrostatic terms. Yet, this apparently very favorable
Pbca structure has never been observed. The reasons for this are open to discussion,
one possibility being the unfavorable nucleation or growth rate of the corresponding
crystal embryos in solution or in the melt.
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Table 2. Coulombic and Polarization Energies of 1,4-Dichlorobenzene Polymorphs by the Electron-Pixel
Integration Method

Number of e-pixelsa) Number of
moleculesb)

�E(coul) /kJ mol�1 �E(pol) /kJ mol�1

n� 4 n� 5 n� 4 n� 5 n � 4 n� 5

� 12009 6531 213 25.8 24.5 6.6 6.5
� 11995 6524 223 23.5 24.9 6.7 6.6
� 12018 6542 221 26.3 26.0 7.0 7.0
Pbca, 0 K 12015 6519 225 29.2 33.6 10.6 10.3
Pbca, 100 K 12015 6519 225 25.6 ± 8.4 ±
Pbca, r.t. 12015 6519 205 21.6 ± 6.1 ±

a) All e-pixels with charge less than 10�7 electrons are screened out. b) All molecules with distance between
centers of mass � 20 ä are included.



Molecular-Packing Analysis. ± For a detailed examination of the molecular packing,
the lattice electrostatic energy has been partitioned over each pair of neighbour
molecules in the various polymorphs (Tables 3 ± 6). Each pair is characterized by a
center of mass distance (d), a symmetry operator (S screw, T translation), and a
molecule-molecule total energy as calculated by the UNI force field, as well as the
electrostatic energy. This kind of partitioning is possible for the electrostatic energy,
which is additive over molecules, but it is meaningless for the polarization energy
because the polarizing electric field at any point in one molecule results from the
contributions of all surrounding molecules.

Tables 3 ± 6 list the molecule-molecule energies E(4) and E(5) calculated for
different condensation levels. They are seen to vary by 1 ± 2 kJ mol�1. This is disturbing
for the discussion of fine detail of crystal packing but it is almost unavoidable. Net
electrostatic energies are tiny differences between two large numbers; on the one hand,
the sum of the nuclei-nuclei and electron-electron repulsion energies, of the order of
500,000 kJ mol�1, and the overall electron-nuclei attraction energy, which is of the same
order of magnitude. The resulting net energies may differ slightly depending on several
factors, including condensation level, screen-out threshold, symmetrization of the
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Table 3. 1,4-Dichlorobenzene, �-Structure: Molecule�Molecule Distances and Energies between Close
Neighbors

Pair label Symmetry operationa) d/ä E(4)b)/kJ mol�1 E(5)c)/kJ mol�1 E(UNI)d)/kJ mol�1

A T (0,0,� 1) 3.92 � 4.8 � 2.8 � 23.4
B T (0,� 1,0) 5.74 � 5.6 � 5.2 � 12.4
C T (0,1,1; 0,� 1,� 1) 6.95 � 4.7 � 5.2 � 6.3
D S (1/2,1/2,0; �1/2,1/2,0);

(� 1/2,� 1/2,0; 1/2,� 1/2,0)
7.87 � 2.1, �2.3 � 2.3, �2.4 � 4.5

E S (1/2,1/2,1; �1/2,1/2,� 1);
(� 1/2,� 1/2,� 1; 1/2,� 1/2,1)

7.49 � 2.6, �2.9 � 2.7, �3.0 � 4.0

F T (0,1,� 1; 0,� 1,1) 6.95 � 0.1 � 0.2 � 1.8

a) For each pair, the symmetry operation is either translation (T) or screw axis (S). b) Electrostatic energy,
condensation level 4. c) Electrostatic energy, condensation level 5. d) Energy by the UNI empirical force field.

Table 4. 1,4-Dichlorobenzene, �-Structure: Molecule�Molecule Distances and Energies between Close Neigh-
bors. See footnotes to Table 3.

Pair label Symmetry operation d/ä E(4)/kJ mol�1 E(5)/kJ mol�1 E(UNI)/kJ mol�1 Eqq
a)

A T (0,0,� 1) 3.88 � 4.3 � 5.3 � 23.9 � 2.0
B T (0,� 1,0) 5.87 � 4.6 � 4.1 � 11.8 � 2.2
C T (1,0,1; �1,0,� 1) 6.83 � 5.6 � 6.0 � 7.1 � 2.2
D T (� 1,0,0) 7.30 � 4.0 � 5.0 � 6.7 � 1.9
E T (0,1,1; 0,� 1,� 1) 6.98 � 5.1 � 4.2 � 6.5 � 1.9
F T (1,1,1; �1,� 1,� 1) 8.75 � 0.8 � 0.8 0 � 0.7
G T (� 1,1,0; 1,� 1,0) 9.56 � 1.0 � 1.4 � 1.2 � 1.0

a) Electrostatic energy calculated by point-charge methods.



electron-density distribution, and merely that the −atoms× in our model are not spherical
but agglomerates of cubes. (This factor alone causes the electrostatic energy of an Ar
crystal to deviate from zero by 1 ± 2 kJ mol�1 even at the best condensation level.)
However, the differences between calculations at different condensation levels must
cancel themselves out to some extent, because they are about the same for total
electrostatic energies as for individual molecular pair energies. There are also small
differences (up to 0.4 kJ mol�1) between electrostatic energies of pairs related by
symmetry-equivalent screw axes. These can probably be attributed to lack of precise
rotational invariance of the electron-density distribution.

The electrostatic energies of all molecule-molecule pairs for distances up to 20 ä
are shown graphically in Fig. 1 for the �-structure, and quite similar results are
obtained for the others. For all four crystal structures, the pair-pair energies converge to
zero for distances greater than about 10 ä. Furthermore, the four structures have quite
similar molecule-molecule energy distributions (see also Tables 3 ± 6), showing that, as
far as electrostatic energy is concerned, there are no major differences in the
coordination patterns. Not more than four or five molecular pairs make significant
contributions to the electrostatic energy; they are the closest pairs and also those that
give the highest UNI energy contributions. However, some of the electrostatic pair
energies are calculated to be slightly destabilizing (Eel� 0), whereas none are
destabilizing according to UNI potentials, which include dispersion, polarization, and
electrostatic energies in an unspecified mixture.

Coming to packing details, we note first that, for the �- and �-structures, the three
closest neighbor pairs A, B, C, all involving translationally related molecules, are
practically the same (Tables 3 and 4). The A interaction involves molecular stacking
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Table 5. 1,4-Dichlorobenzene, �-Structure: Molecule�Molecule Distances and Energies between Close Neigh-
bors. See footnotes to Table 3.

Pair label Symmetry operation d/ä E(4)/kJ mol�1 E(5)/kJ mol�1 E(UNI)/kJ mol�1

A S (0,1/2,1/2; 0,� 1/2,1/2);
(0,� 1/2,� 1/2; 0,1/2,� 1/2)

4.87 � 4.7, �5.1 � 5.0, �5.6 � 15.9

B T (0,� 1,0) 6.02 � 6.4 � 6.9 � 10.5
C T (1,0,1; �1,0,� 1) 7.17 � 6.3 � 4.5 � 5.6
D S (1,1/2,1/2; 1,� 1/2,1/2);

(� 1,� 1/2,� 1/2; �1,1/2,� 1/2)
7.63 � 2.1, �2.3 � 2.2, �2.3 � 2.1

E T (0,0,� 1) 7.41 � 0.1 � 0.1 � 1.1
F T (1,� 1,1; �1,1,� 1) 9.37 � 0.4 � 0.4 � 2.3
G T (1,1,1; �1,� 1,� 1) 9.37 � 0.5 � 0.5 0

Table 6. 1,4-Dichlorobenzene, Pbca Virtual Structure: Molecule�Molecule Distances and Energies between
Close Neighbors. See footnotes to Table 3.

Label Symmetry operation d/ä E(4)/kJ mol�1 E(UNI)/kJ mol�1

A S along b 5.55 � 6.5 � 12.7
B S along a 5.94 � 7.7 � 8.7
C S along c 6.46 � 1.6 � 8.0
D T (0,� 1,0) 6.99 � 2.8 � 3.6
E T (0,0,� 1) 8.63 � 0.3 � 1.3



along the short crystal axis (3.92 ä in �, 3.88 ä in �), as illustrated in Fig. 2. As the
electrostatic energy for this pair is only �3 to �5 kJ mol�1, compared with the
corresponding UNI energy of ca. �24 kJ mol�1, we can assume that the major part of
the interaction energy comes here from the dispersion term; interestingly, the point-
charge electrostatic energy for this pair is destabilizing. The B interaction involves a
slipped stack along a 5.7 ± 5.8 ä translation (Fig. 3) and again the electrostatic energy is
less than half the UNI energy for both �- and �-structures. This same motif appears in
the B pair of the �-structure. Finally, the C interaction involves displacement by 6.8 ±
6.9 ä almost in the plane of the benzene ring (Fig. 4). Although the molecule-molecule
distance in the C pair is greater than in the A and B pairs, its electrostatic energy is the
lowest and in this case quite comparable with the corresponding UNI energy. As seen in
Fig. 4, the C arrangement is characterized by quite short intermolecular H ¥¥¥ Cl
contacts (2.970 ä).

The remarkably short C�Cl ¥¥ ¥ Cl�C contact distance of 3.38 ä in the �-structure
occurs in the translation related G pair (Table 4 and Fig. 5). This is the prototype of the
nearly linear type-I contact of Desiraju and Parthasarathy [21], which is frequently
observed in Cl-containing organic compounds. In spite of the short Cl ¥¥¥ Cl distance and
the unfavorable disposition of bond dipoles, the electrostatic-energy contribution for
this molecular pair is ca. �1 kJ mol�1 and, hence, slightly stabilizing. A similar result is
obtained for the UNI energy. Although the juxtaposition of negative charges on the Cl-
atoms is energetically unfavorable as far as localized point charges are concerned,
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Fig. 1. 1,4-Dichlorobenzene, �-structure: dependence of the electrostatic molecule-molecule energy on distance
between molecular centers of mass. The trend is the same in all polymorphs and independent of computational

details.



penetration effects may be assumed to stabilize the system. In any case, the linear type-I
interaction evidently plays only a very minor role as far as its contribution to the lattice
energy is concerned. We note that the F pair in the �-structure corresponds to a similar
type-I contact with a longer Cl ¥¥ ¥ Cl distance of 3.82 ä, and is likewise insignificant as
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Fig. 3. The B-motif (see Tables 3 and 4) in the �- and �-structures

Fig. 4. The C-motif (see Tables 3 and 4) in the �- and �-structures. The shortest Cl ¥¥ ¥ H distances are ca. 2.97 ä.

Fig. 2. The A-motif (see Tables 3 and 4) in the �- and �-structures. The Cl ¥ ¥ ¥ Cl distance is 3.92 ä.

Fig. 5. The controversial G-motif in the �-structure with head-on C�Cl groups. The Cl ¥¥ ¥ Cl distance is 3.39 ä.



far as its electrostatic energy is concerned. Other nearest-neighbor pairs involving
translation are the D and E pairs of the �-structure, and the C pair of the �-structure
(Fig. 6). These seem to be stabilized by confrontation of positively charged H-zones
and negatively charged Cl-zones, with Cl ¥¥ ¥ H contact distances of ca. 3 ä.

Other, completely different motifs appear in the monoclinic structures, along screw
axes or glide planes (Fig. 7). To this category belong the D and E pairs of the �-
structure, as well as the D-motif in the �-structure. Of the same type, but more closely
packed, is the A-motif in the �-structure (Fig. 8). These motifs seem to gain
stabilization from diffuse interactions that are not easily sorted out, but including
juxtaposition of positively charged H-zones and negatively charged Cl-zones. The Cl ¥¥¥
H distances here are in a quite normal range.

Finally, Fig. 9 shows a prototypical electrostatically destabilizing arrangement,
appearing in the F pair of the �-structure and the G pair in the �-structure. Although
the H ¥¥¥H distances of 4.6 ä are longer than normal contact distances and would
hardly have been considered worth discussing in traditional packing analyses, the
electrostatic interaction between positively charged H-zones is significantly different
from zero. Here, penetration effects are insignificant because the H-atom electron
cloud is very contracted. Both these examples of electrostatically destabilized pairs
involve parallel molecules with H ¥¥¥H confrontation, and so does the D pair in the
virtual Pbca structure (Fig. 10). This is the most extreme in this respect with an
electrostatic energy of � 2.8 kJ mol�1, although the corresponding UNI energy is
stabilizing (� 3.6 J mol�1 ). Such electrostatically destabilized pairs are rather common
in organic crystal structures [12].

Fig. 7. A typical, loose herring-bone pattern in the monoclinic �- (D- and E-motifs) and �- (D-motif) structures
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Fig. 6. Another kind of translational pattern found in the �- (D- and E-motifs) and �- (C-motif) structures. Note
the short Cl ¥¥ ¥ H distances (ca. 3.03 ä).



It would appear from the above analysis that, in the three observed crystal
structures of 1,4-dichlorobenzene and in the best virtual structure obtained by force-
field calculation, electrostatic stabilization can arise from a variety of molecule-
molecule interactions, involving mainly C ¥¥¥H or Cl ¥¥¥ H intermolecular contacts.
Stacking seems to be slightly more efficient in this respect than herring-bone patterns.
In particular, the P1≈ space group of the �-structure requires all molecules to be parallel,
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Fig. 8. A more closely packed herring-bone pattern in the �-structure (A-motif)

Fig. 10. An electrostatically destabilizing pattern found in the virtual Pbca structure with shortest H ¥ ¥ ¥H distance
of 2.72 ä and Cl ¥ ¥ ¥Cl distance 6.99 ä

Fig. 9. An electrostatically destabilizing pattern found in the � structure (F-motif)with shortest H ¥ ¥ ¥H distance of
4.62 ä



so that herringbone patterns are impossible; the structure nevertheless gets along very
well with sheared parallel planes.

Outlook. ± In contrast to force-field calculations based on Eqn. 1, the electrostatic
energy calculated with Eqn. 2 is parameter-free and exact (apart from rounding-off
errors arising from condensation level, imperfect symmetrization, etc). The polar-
ization energy calculated with Eqn. 3 does depend on an empirical partitioning of
atomic polarizabilities, as described earlier, but it is not adjustable in the sense that
force-field parameters are. Thus, as far as our new calculations go, the results are more
rigorous than those derived from parametric schemes. However, unlike the latter, they
cannot be compared quantitatively with experimental lattice energies because the
missing parts ± exchange repulsion and dispersion energies ± are of magnitude
comparable to the electrostatic and polarization energies that are included. The value
of our results is not that they yield approximate lattice energies but rather that they
shed new light on crystal-packing factors and sometimes run counter to widespread
interpretations of the structural evidence based on parametric models. Even if, as
foreseen, the pixel-pixel approach will be adapted to the full calculation of
intermolecular energies, the question will arise as to whether it will be applicable to
crystal-structure prediction for large molecules or to the prediction of protein folding.
This may not be possible with present computational power, but we are encouraged to
believe that it will be before very long.

One rather clear result in Tables 1 and 2 is that electrostatic energies derived from
atomic point charges (Mulliken or ESP) are much smaller than the actual electrostatic
energies. There are also differences in sign and, hence, in the chemical meaning of the
message conveyed by the calculation. The comparison of UNI energies with electro-
static energies (Tables 3 ± 6) suggests that, to make up for this deficiency, UNI energies
contain a considerable electrostatic component, with the implication that large
dispersion energies tend to go together with large electrostatic energies. Similar
considerations apply to other parametric schemes. They yield good lattice energies but
give a false impression of the importance of the underlying energy terms.

The introduction of penetration energy may change the current view of electro-
statically attractive or repulsive intermolecular atom contacts in crystals. Compared
with point-charge models, even those adapted to reproduce the electrostatic field of the
molecules, penetration effects produce a substantial increase in intermolecular
electrostatic energies. In some cases, this completely alters the chemical interpretation.
Although the numerical results change a little with condensation level, these
calculations clearly show that in this head-on approach the electrostatic energy of
the dimer is not monotonic destabilizing, as is the point-charge energy, but stays
essentially close to zero until the sharp onset of repulsion at a Cl ¥¥¥ Cl distance just
below 3.4 ä. A very similar conclusion was reached in a careful quantum-chemical
study [22] of chloromethane dimers, using ab initio intermolecular perturbation theory
(IMPT). As a check, these calculations for chloromethane dimers have been repeated
with our scheme, and the same results were obtained for electrostatic energies within a
few kJ mol�1. Similarly, the total electrostatic energy of the hexachlorobenzene crystal
is calculated to be stabilizing but it is destabilizing according to a point-charge energy
calculation [12]. Thus, interpretations of the Cl ¥¥ ¥ Cl interactions in crystal structures
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based on simple localized charge distributions are unreliable and should be regarded
with reserve2). Indeed, the extent to which Cl ¥¥¥ Cl interactions play a significant role
in steering the molecular arrangement within a crystal depends not directly on
electrostatic factors but rather on dispersion. On the other hand, confrontation of H-
atoms in the mutual approach of molecules is always electrostatically repulsive
according to the rigorous calculations, a result that will come as no surprise. Penetration
plays a lesser role here because the H-atom charge is so small and contracted.

One question in packing analysis that may be of concern in the light of our results is,
to what extent do r�1 interactions between molecular charge distributions translate into
interactions between individual atoms? Ever since Kitaigorodski×s pioneering work on
crystal packing [6] and with the development of atom-atom potential schemes,
attention has been focussed almost exclusively on the role of interactions between
atoms in different molecules that are −in contact×. By this is generally meant that the
separation between the atoms concerned is less than Req, the distance where the atom-
atom potential curve has zero slope, where attractive and repulsive forces exactly
balance. These zero-slope distances vary somewhat among atom-atom potentials
preferred by different authors, but not by much. According to this picture, the
dominating features of a molecular crystal structure involve the points where molecules
come into contact with one another, and much of the literature on the interpretation of
observed crystal structures has been concerned with the identification of recurring
patterns and the assessment of the relative importance of various localized structure-
directing interactions. The analysis of close intermolecular contacts is especially
appealing in terms of atom-atom pair potentials and has indeed been of great help in
estimating values of the adjustable parameters of such force fields to reproduce
observed contact distances.

However, it is obvious that the only atoms that can come into contact with those of
neighboring molecules in molecular organic crystals are those on the molecular
peripheries (mostly limited to univalent H, F, Cl, etc., but also divalent O and trivalent
N). To balance the net intermolecular attraction, the forces between pairs of atoms in
intermolecular contact must be repulsive (although they may correspond to negative
potential energy, i.e., be stabilizing). In empirical force fields of the type described by
Eqn. 1, the role of contact atom pairs in stabilizing the crystal structure is greatly
overemphasized because of the r�6 dependence of the attraction-energy term. The
distances between other noncontact pairs are large enough that their contributions in
an r�6 dependence scheme become negligible. On the other hand, the new electro-
static-energy calculation with its r�1 dependence shows that stabilizing interactions
between electrons in one molecule and atomic nuclei in the other are important at
much longer distances. Thus, the contact atom pairs that occur in molecular crystals
should not necessarily be considered as the prime promoters of the intermolecular
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2) As an extreme example, consider a vastly oversimplified electrostatic interpretation involving the dipole
moment of chlorobenzene, 1.69 D. The C�Cl bond distance is ca. 1.72 ä, so, if the charge separation is
assumed to be localized in this bond, equal and opposite charges of 1 q (q� electronic charge) are
associated with each atom. For such charges, the electrostatic energy for the head-on C�Cl ¥¥¥ Cl�C
approach of two such molecules at a Cl ¥¥ ¥ Cl distance of 3.38 ä would amount to ca. 400 kJ mol�1,
compared with the correct result of approximately zero. Even if the −length× of the dipole is taken as the
length of the molecule (ca. 5.2 ä), the approach energy would still amount to an impossible value.



attraction but rather as a result of longer-range effects. This change in outlook, if
confirmed by further analyses, suggests that we may need to revise some of the
conclusions derived from too-exclusive attention to close intermolecular contacts in
crystals ± and other supramolecular assemblies as well. While concepts such as surface
complementarity will doubtless retain their validity in the broad context of molecular
recognition, they may have to be modified to take into consideration electrostatic
forces extending past the surface atoms into the interior of the interacting molecules.

The molecular pictures in this paper were drawn with the program SCHAKAL [23].
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